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ABSTRACT 

The question of centers addresses the issue of how to inscribe an object within a region defined by a set of 
constraints. More than one centering approach can be defined which leads to a different inscribed object 
and a different derivation procedure for both the object as well as its center. When attempting to inscribe 
the largest sphere within the constraints polytope the problem is defined as one of finding the Euclidean 
center of that polytope. We address in this paper various issues associated with the derivation of the 
Euclidean center and illustrate one application of this center to interval reciprocal matrices. 
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 1. Introduction 

Constrained optimization problems are defined by a set of constraints defining a region in space. The 
specific region is, of course, affected by the nature of the constraints. The latter may be either linear or 
nonlinear, but the question of centers applies to both. Essentially, this question addresses the issue of how 
to inscribe an object within the region defined by the constraints. More than one centering approach can 
be defined which leads to a different inscribed object and a different derivation procedure for both the 
inscribed object as well as its center. In this paper we focus our main attention on the Euclidean center, as 
we find it the most suitable center for Multiple-Objective Linear Programming (MOLP) problems. 

The concept of a center has been a problem of some interest a few decades ago and has seen a 
rekindled interest in recent years. While it is important to many theoretical and applied problems—
ranging from location theory to interior-point linear programming algorithms—specific literature on the 
subject is quite scant. The first publication that has treated the question of centers in an explicit manner is 
that of Huard (1967). In this paper, he develops a general algorithm for optimizing a concave function 
over a convex feasible region with the use of centers and bounds. The generality of the algorithm is 
maintained through the general definition of the distance that was used. However, due to the general 
formulation considered in that paper, only necessary conditions for distance were mentioned. Sonnevend 
(1985) defined an analytic center and used it to develop a linear programming approach based on 
Karmarkar’s interior-point projective algorithm (Karmarkar, 1984). Boggs et al. (1989) used Huard’s 
method of centers to enhance interior-point methods using dual affine trajectories. Fagan and Falk (1996) 
introduced a method of Euclidean centers for solving single-objective linear programming problems. 
Their work uses Euclidean center without identifying its origin, which seems to defy an original source. 
In a recent book by G.B. Dantzig, the idea of a Euclidean center is mentioned as an exercise to the student 
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(Dantzig and Thapa, 1997, Ex. 6.1, p.151). Parenthetically we add that the suggestion in the book will not 
lead to the proper center. 

 The above references treat the issue of centers in an explicit manner. This issue appears in a less 
explicit manner in other areas as well. Location theory, for example, has traditionally been interested in 
establishing the best location for placing a service node in a given network (see, e.g., Hansen et al, 1987). 
While not addressed as a centering problem specifically, such a problem is exactly that of finding a 
center. One may be interested in finding a point that is as close as possible to all nodes in the network or, 
conversely, finding a node that is as far away as possible from all nodes in a network (for disposing of 
waste, for example). Such problems measure distances from nodes that form a network.  

 As seen from the above survey, more than one center has been developed in the past and more than 
one application has been identified (Sadka, 1998). Limiting our discussion to linear systems of constraints 
simplifies the way we derive these centers. It does not, however, reduce the possibilities available for 
consideration. A center can be defined in more than one way and each way leads to different analytic and 
geometrical implications.  Specifically, we note that the intersection of a set of linear constraints for a 
bounded linear programming problem defines a polytope in n-dimensional space. When one talks about a 
center of such a polytope one usually refers to the point from which one inscribes some object contained 
by the polytope. The reasoning behind this operation, as well as the type of object used—be it a sphere, or 
an ellipsoid, for example— leads to different definitions for a center. When one wishes to be as far as 
possible from all facets of the polytope— which is equivalent to inscribing the largest sphere— we derive 
the Euclidean center. Its derivation, properties and MOLP applications are the topics of this paper. 

 This paper is arranged as follows. In Section 2 we define a distance between a vector and a 
hyperplane in n-dimensional space and develop a formula for its calculation. We proceed in Section 3 to 
introduce the notion of a Euclidean center, including a discussion of computational methods for finding 
it, its geometrical interpretation and some of its special properties. In Section 4 we suggest an applications 
of the Euclidean center for MOLP problems. Section 5 provides summary and concluding remarks. 

2. The Euclidean Center 

 The Euclidean center of a polytope is defined as the center of the largest inscribed sphere. The use of 
the Euclidean center is most common in facility location theory, for example, where one seeks the best 
location for a so-called obnoxious facility. The resulting solution provides a location, which is most 
distant from every inhabitant site in the area.  

 Denoting the interior space of an n-dimensional polytope with m  facets as S , a vector nÎx R  is 
inside the polytope when Îx S . Assuming that the distance between x  and the i -th facet, where 
1,...,i m= , is ( )id x , the Euclidean center of this polytope is found by solving 

  
{ }{ }i

1
Max Min ( )

i m
d

Î £ £x S
x  (2.1) 

 The formulation in (2.1) maximizes—over the feasible set—the minimal distance to all the 
constraints. The latter include inequality constraints as well as the usual nonnegativity constraints. Next, 
we develop the defining equations for the feasible set. 

 A general linear programming problem is defined through 
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where A 0
0

m ńÎ R ,A 1
1

m ńÎ R , and A 2
2

m ńÎ R . When converting the formulation in (2.2) to 
derive its Euclidean center, the equality constraints do not involve any distance measures. The inequality 
constraints, however, are converted to equality constraints by the usual slack and surplus variables. The 
only difference from the usual case is that each slack/surplus variable is multiplied by the Euclidean norm 
of its respective row. Similarly, the nonnegativity constraints require n surplus variables whose 
coefficient is 1 as it is the Euclidean norm of each individual nonnegativity constraint 0ix ³ . 
Specifically, each of the inequality constraints are modified as followed: 

Case 1: A1 1£x b  

Denoting the i-th row of A1  by A1
i , the conversion to equality constraints is accomplished through 

  
A A  1 1 1 12

, 1i i i
id b i m+ = " £ £x , (2.3) 

where 1
ib  is the i-th component of the vector 1b ., and A1 2

i  is the Euclidean norm of A1
i . 

Case 2: A2 2³x b  

Similarly, by denoting the i-th row of A2  by A2
i , the conversion to equality constraints is accomplished 

through 

  
A A  2 2 2 12

, 1i i i
id b i m- = " £ £x , (2.4) 

where 2
ib  is the i-th component of the vector 2b . 

Case 3: ³x 0  

The norm of each individual constraint is 1 and, therefore, these n constraints are translated to 

   0, 1i ix d i n- = " £ £  (2.5) 

The Feasible Set 

The feasible set whose Euclidean center we seek is comprised of four components: 

(a) The equality constraints: A0 0=x b , 

(b) The inequality constraints: A1 1£x b  and A2 2³x b , 

(c) The nonnegativity constraints on the solution vector, ³x 0 , 

 Next, we build up the constraints set for deriving the Euclidean center. The equality constraints are 
not modified and appear as-is. Next, let’s consider the inequality constraints for parts (a). Letting 1d  and 
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2d  represent the distance measure for each set of constraints in (a), respectively, results in the following 
system of linear equations. 

  

A A D
      

A A D

1 1 1 1 1 1

2 2 2 2 2 2
,

£ + =ì ìï ïï ïí íï ï³ - =ï ïî î

x b x d b

x b x d b
 (2.6)

 

Next, considering the nonnegativity constraints and noting that the Euclidean norm for each one of these 
constraints is simply one, we arrive at the following 

        0, 0³  - =x 0 x d  (2.7) 

where 0d  represents the distance to the nonnegativity constraints. 

The constraint in Error! Reference source not found.-Error! Reference source not found. are now 
augmented to form the system of equality constraints shown below 

A O O O

A D O O
A    A   

A O D O

I O O -I

0 0

1 1 1

22 2

ˆ ˆˆˆ , where : ,

n n
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b

b
x b b

b

0

 . (2.8) 

The matrices D1  and D2  are, respectively, 1 1m m´  and 2 2m m´  diagonal matrices whose diagonal 

elements are the Euclidean norms of the corresponding rows in the matrices A1  and A2 . The augmented 

solution vector, x̂ , is 

  1 2 0ˆ
Té ù= ê úë ûx x d d d  (2.9) 

Where: 

x  - is the original solution vector in (2.2), 

1d  - The distance to each of the constraints of A1 1£x b , 

2d  - The distance to each of the constraints of A2 2³x b , 

0d  - The distance to the nonnegativity constraints ³x 0 . 

Using (2.8), the solution set, S, is defined through 

  { }Â ˆˆ ˆ|S =x x b  (2.10) 

Finding the Euclidean Center 

 To find the Euclidean center for the solution set S of (2.10) one has to solve a maxmin problem. 
Denoting the distance between a point in S and its i-th facet by ( )id x , the Euclidean center of the 
solution set S is found by solving 

  
{ }{ }( )i

i
d

Îx S
Max Min x  (2.11) 

 Solving this maxmin problem is accomplished by considering first the “min” part and then the “max” 



  A. Arbel and L.G. Vargas 

part. The former is handled by defining an auxiliary variable, a , which should be smaller than all the 

distance measures ( )id x . That is:  1 2,i id da a£ £  and 0
ida £ , where 1d  and 2d  are the distance 

measure to the inequality constraints in Error! Reference source not found., and 0d  is the distance 

measure to the nonnegativity constraints, ³x 0 . 

 Together with the definition of S, derived in (2.8), the resulting problem is now given by 
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 (2.12) 

Recalling (2.8), this problem is written compactly as 

  

 max 

    A. .

T

s t =

c x

x b
 (2.13) 

where: 
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e 0

e 0

e 0

bb

0 b

0 b

0 0

, (2.14) 

Notes concerning the solution to (2.13)-(2.14): 

1. The constraints that are active in determining the inscribed sphere, are those for which id a= . 

2. The first three row blocks in A  correspond to the formulation responsible for solving the ‘min’ 
part of the maxmin problem of (2.11). 

3. The last three blocks of columns of A  in (2.14) correspond to slack variables needed to convert 
the three sets of inequality constraints introduced in order to convert the ‘min’ part into equality 
constraints.  

4. The vectors e and 0 in (2.14) are the unit and zero vectors, respectively. 

5. The objective vector, c , is given by 

  1 21 3 2( )1 0 0 , where
T n m m+ + +é ù= Îê úë ûc c R . 

6. The solution vector, x , is defined by 
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  1 21 3 2( )
1 2 0 1 2 3 ,

T n m ma + + +é ù= Îê úë ûx x d d d s s s x R  

Next, we illustrate the solution process through some examples. 

3. The Euclidean Center of an Interval Reciprocal Matrix 

 Euclidean centers are particularly useful in the study of reciprocal matrices whose entries are 
intervals.  An interval reciprocal matrix is given by 

12 12 13 13 1 1

23 23 2 2

1 [ ; ] [ ; ] ... [ ; ]

1 [ ; ] ... [ ; ]

( ) 1 ... .

... .

1

n n

n n

l u l u l u

l u l u

IJ A

 
 
 
 
 
 
 
 

 

Thus, in comparing elements i and j, preference ( ija ) may be stated through an inequality such as: 

ij ij ijl a u  , where lij and uij represent the lower and upper bounds, respectively.  Following the 

formulation outlined above, the MaxMin Euclidean center is given by the solution to the following LP 
problem:   
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 (3.1) 

Even though judgments are approximations, it is possible that decision makers have doubts about which 
exact judgment to use.  This may be due to lack of information or knowledge of the subject matter.  Thus, 
interval judgments could be used to represent those situations where uncertainty is created not by the 
environment but by the lack of information.  In this case, we propose to use the Euclidean center of the 
matrix as the priority of the elements being compared.  The most interesting situation takes place when 
people not only have information uncertainty but they also have incomplete judgments.   

4. Partially-Filled Comparison Matrices 

 How to deal with incomplete reciprocal matrices has been studied since Harker (1987) published his 
paper.  There are a number of approaches using traditional statistical measures (Ohya 2007; Gao et al. 
2010), minimizing inconsistency (Shiraishi et al. 1998; Obata et al. 1999; Fedrizzi and Giove 2006; 
Bozoki et al. 2009; ), and graph theory (Benroider et al. 2010).  In this paper we show how to use 
Euclidean centers to study partially filled interval reciprocal matrices. 

  An n n  comparison matrix has elements, ija , that try to estimate the ratio of iw  to jw , where iw  

and jw  are the priorities of the i-th and j-th elements, respectively.  We want to use the idea of Euclidean 
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Center to estimate the priorities of partially-filled matrices, i.e., matrices that have some missing entries.  
Unlike previous papers in the subject , we do not try to estimate the missing pairwise comparisons.  We 
estimate the priorities of the elements compared with the judgments provided.  For example, consider a 
4 4  comparison matrix whose first row elements are described through 

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

 

The region shown in region A corresponds to a pairwise comparison response of 1
5 1 scale unit, that of B 

to 1 1  scale unit, and that for C, corresponds to the interval of 5 1 scale unit.  These three responses 
form the first row to the resulting comparison matrix shown below: 

1 1 1
6 4 2

1
2

1 1
6 4

1 [ , ] [ ,2] [4,6]

[4,6] 1
,

[ ,2] 1

[ , ] 1

A

 
 
 
 
 
 

 

The Euclidean center of this matrix is given by (0.1689, 0.7039, 0.0921, 0.0351)T.  As the width of the 
interval around the judgments tends to zero the Euclidean center converges to (0.1389, 0.6944, 0.1389, 

0.0278)T which is the vector (1, 5, 1, 1/5)T normalized using the 1l -norm.  As long as the entries in the 

matrix form a spanning tree, the Euclidean center of the matrix will coincide with the principal right 
eigenvector of the consistent matrix derived from the spanning tree judgments.  When the entries do not 
form a spanning tree, the problem may not have a solution because the feasible region may be empty.  In 
Arbel and Vargas (2008) we showed that the Euclidean center exists if and only if 0  in (3.1).  For 
example, consider the matrix given by 

31 121 1
5 5 56 4

5 1 1
12 12 4

5 1
3 3

11 [ , ]

5 1 12 31 [2,4]

11

4 1[3,5] 1

  
  
   
  
  

   

A , W  

Because the entries of the matrix A form a spanning tree, the midpoints generate the consistent matrix W. 
Thus, the Euclidean center and the PR-eigenvector coincide and the priorities are given by (0.1237, 
0.6186, 0.0515, 0.2062)T as the width of the interval tends to zero.  When the entries do not form a 
spanning tree, the priorities assigned to the alternatives that cannot be reached (or compared) will be 
equal to zero.  If it is not a spanning tree because there are loops, but all the alternatives can be reached 
from all the others, then the Euclidean center will depend on the width of the interval selected.  For 
example, if the matrix A is now given by 

1 1
6 41 [ , ]

1 [1,3] [2,4]

1

[3,5] 1

 
 
 
 
 
 

A  
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but the MaxMin problem (3.1) does not always have a solution.   For the matrix given above the smallest 
width of the interval for which there is a solution is equal to 1.5505.  The new matrix A and 
corresponding Euclidean center are given by 

1 [0.153,0.289] 0.0810

1 [0.449,3.551] [1.449,4.551] 0.4661
, ,

1 0.1313

[2.449,5.551] 1 0.3216

   
   
    
   
   
   

A  w  

respectively.  Note that we do not have an equivalent solution using the Eigenvector method. 

5. Summary 

 We have shown that the Euclidean center of incomplete interval reciprocal matrices can be used to 
derive priorities when the eigenvector method cannot be used.  We showed that when the entries of the 
incomplete matrix form a spanning tree the solution of the Euclidean center method coincide with that of 
the principal right eigenvector method.  This approach can be used to provide judgments for the entries of 
the incomplete matrix of pairwise comparisons.   
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